A new approach to Poisson approximation and applications

نویسندگان

  • Tran Loc Hung
  • Le Truong Giang
چکیده

The main purpose of this article is to introduce a new approach to Poisson approximation. Some bounds in Poisson approximation for probability distributions of a wide class of various arrays of row-wise independent discrete random variables are established via a probability distance. Some analogous results related to random sums in Poisson approximation are also considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Exponentiated Poisson-Lindley Distribution; Features and Applications in Reliability

Abstract. In this paper a new three-parameter lifetime distribution named “the Exponentialed Lindley-Poisson (E-LP) distribution” has been suggested that it has an  increasing, decreasing and invers bathtube hazard rate depending on the parameter values. The (E-LP) distribution has applications in economics, actuarial modeling, reliability modeling, lifetime and queuing problems and biological ...

متن کامل

A Charlier-Parseval approach to Poisson approximation and its applications

A new approach to Poisson approximation is proposed. The basic idea is very simple and based on properties of the Charlier polynomials and the Parseval identity. Such an approach quickly leads to new effective bounds for several Poisson approximation problems. A selected survey on diverse Poisson approximation results is also given. MSC 2000 Subject Classifications: Primary 62E17; secondary 60C...

متن کامل

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

The Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients

In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014